The generator matrix 1 0 0 1 1 1 2 2 2X+2 1 1 2 1 1 1 1 1 1 X+2 X 3X+2 1 1 1 X 1 X+2 1 2 1 3X+2 1 1 3X 3X+2 1 1 2X+2 2X 1 X 3X+2 1 1 X+2 1 1 2X+2 1 1 1 3X+2 2 3X+2 0 1 0 1 2 1 2 X 1 2X+2 2X+2 3X X 1 1 1 1 X 1 2 2 1 1 2 1 2X+2 1 1 1 3X+2 1 2 1 1 1 1 3X 1 3X 1 1 0 1 0 0 3 3 1 X 1 2X 2X+3 1 2 1 3X 3X+1 X+2 3X+1 X 1 1 X+2 X+3 3X+2 2X+2 3X+3 1 2X 1 X 1 3X+1 3X+3 1 1 2 1 1 1 X+1 1 2X+2 X+2 2X+2 X 2X+1 3X+2 1 2X+1 X+3 X 0 2X 1 1 3X 3X+2 2X+1 1 2X+2 3X+2 1 X+1 1 X+2 1 X 2X+1 2 3 X+3 1 3X 1 1 X 1 1 X+2 3X 3X+3 1 3 1 3X+2 2 2X+2 X 3X+2 2X+2 1 0 X+2 2X+3 0 0 0 1 X+1 3X+1 2X 3X+3 1 3X X 3X 3 3 2X+3 1 2X+1 0 3X 1 X+1 X 3X+2 2X 3X+3 1 3X+1 0 X+2 3X+1 3 2X+2 2X X+3 3 3X+2 2 2X+2 1 3X X+2 1 1 2X+2 X+3 1 X+1 3X 2X+2 3X+2 2X+3 X+3 1 1 3X+1 3 X+2 1 1 3X+2 3X+2 1 X+3 X+1 2X+2 1 X 1 X+3 3 2X+1 1 0 X 3X+2 X+1 X+3 X+2 X 2 1 2X+3 X+3 1 3X+3 0 1 2X+1 2X+3 3X+1 X+2 2X 3X 1 X+2 2X+2 0 0 0 2X 2X 0 2X 2X 2X 2X 2X 0 0 0 2X 2X 2X 0 2X 0 0 0 2X 0 0 0 2X 0 0 0 0 0 2X 2X 2X 2X 2X 0 0 2X 0 2X 0 0 0 0 2X 2X 2X 0 2X 0 2X 2X 2X 2X 0 2X 2X 0 0 2X 0 0 2X 2X 2X 2X 2X 2X 0 0 0 0 2X 0 0 0 2X 0 2X 0 0 2X 0 2X 0 2X 2X 2X 2X 0 0 2X 2X generates a code of length 95 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 90. Homogenous weight enumerator: w(x)=1x^0+229x^90+812x^91+987x^92+1100x^93+1014x^94+1010x^95+765x^96+574x^97+414x^98+390x^99+248x^100+278x^101+159x^102+88x^103+62x^104+32x^105+22x^106+4x^107+1x^108+1x^110+1x^122 The gray image is a code over GF(2) with n=760, k=13 and d=360. This code was found by Heurico 1.16 in 1.56 seconds.